The weighted dual functionals for the univariate Bernstein basis
نویسندگان
چکیده
We find an explicit formula for the weighted dual functions of the Bernstein polynomials with respect to the Jacobi weight function using the usual inner product in the Hilbert space L[0,1]. We define the weighted dual functionals of the Bernstein polynomials, which are used to find the coefficients in the least squares approximation. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملWeighted dual functions for Bernstein basis satisfying boundary constraints
In this paper, we consider the issue of dual functions for the Bernstein basis which satisfy boundary conditions. The Jacobi weight function with the usual inner product in the Hilbert space are used. Some examples of the transformation matrices are given. Some figures for the weighted dual functions of the Bernstein basis with respect to the Jacobi weight function satisfying boundary condition...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملAn identity for a general class of approximation operators
We prove an identity for basis functions of a general family of positive linear operators. It covers as special cases the Bernstein, Szász–Mirakjan and Baskakov operators. A corollary of our result can be considered a pointwise orthogonality relation. The Bernstein case is the univariate case of a remarkable identity which recently was presented by Jetter and Stöckler. As an application we give...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 186 شماره
صفحات -
تاریخ انتشار 2007